Concurrent elution of calcium phosphate and macromolecules from alginate/chitosan hydrogel coatings.
نویسندگان
چکیده
The concurrent release of calcium phosphate and biomacromolecules may improve wound healing responses at the interface with ceramic materials of orthopaedic and dental implants. Hydrogel coatings consisting of a mixture of alginate and chitosan were doped and applied onto solid carriers with the aim of investigating their use as local delivery vehicles. Coatings containing both the model macromolecule FITC-dextran 70 kDa (FD 70) and dispersed calcium phosphate carbonate (CPC) nanoparticles were coated onto a solid, nonporous model substrate to study the concurrent release of FD 70 and calcium and phosphate ions from within the hydrogel. Hydrogel coatings containing only FD 70 were cast onto porous calcium phosphate coatings, similar to hydroxyapatite, to study the release of FD 70 from, and calcium and phosphate ions through, the hydrogel coating. Transmission electron microscopy showed good dispersion of the CPC nanoparticles, and scanning electron microscopy and atomic force microscopy showed that increased CPC loading resulted in an increase in surface roughness but to extents well below those affecting cell responses. The release of FD 70 from CPC-loaded coatings was similar to release from the hydrogel alone, although higher CPC loadings resulted in small changes. The release of FD 70 was better described by double or triple phase zero order release kinetics; this complex time dependence indicates that in addition to outdiffusion, other, time-dependent factors apply, such as swelling of the gel, as expected from the known effects of calcium ions on alginate. Calcium and phosphate ions were also released, with similar release kinetics, through the hydrogel layer from the underlying CaP layer. In either case, release decreased to negligible levels after 3 days, suggesting that the systems of this study are suitable for short-term concurrent release of water-soluble biomacromolecules and calcium and phosphate ions.
منابع مشابه
Glucan Particle Encapsulated Rifampicin for Targeted Delivery to Macrophages
Glucan particles (GPs) are 2–4 m spherical, hollow, porous shells extracted from Baker’s yeast, Saccharomyces cerevisae. The surface of the GPs is composed primarily of 1,3--glucan and the particles are efficiently phagocytosed via receptor-mediated cell uptake by macrophages, phagocytic cells expressing glucan receptors. The hollow cavity of the GPs allows for efficient absorption and encaps...
متن کاملHydrogels Containing Marine Polysaccharides For Bone and Cartilage Tissue Engineering
Introduction: The most common biopolymers used to build-up 3D scaffolds for bone and cartilage tissue engineering are chitosan, alginate, cellulose derivatives, hyaluronic acid, chondroitin sulfate, collagen and gelatin. In this study, we propose to evaluate the potential of two new marine exopolysaccharides (HE800 and GY785) that are glycosaminoglycan-like polymers and that can be produced in ...
متن کاملساخت، مشخصه یابی و بررسی خواص مکانیکی و زیستی داربست هیبریدی نانوکامپوزیتی استخوانی از جنس آپاتیت/ ژلاتین- کیتوسان به روش زیست تقلیدی
In this project, we prepared biomimetic nanocomposite scaffolds from gelatin and chitosan and hydroxyapatite and subsequently the scaffolds were evaluated by common used bulk technique. For this purpose, the nanocomposite hydrogel/apatite bone tissue engineering scaffolds were fabricated using applied biomimetic method accompanied with freeze drying technique. The apatite was precipitated usi...
متن کاملBiomimetic mineralisation of polymeric scaffolds using a combined soaking and Kitano approach.
Chitosan hydrogels are of considerable interest in synthetic biomimetic mineralisation strategies due to their favourable characteristics such as the presentation of a large surface area for crystal nucleation within a structured yet responsive scaffold. Chitosan hydrogels were prepared and subsequently calcium carbonate mineralisation was initiated using a method which combines alternate soaki...
متن کاملAn Injectable, Calcium Responsive Composite Hydrogel for the Treatment of Acute Spinal Cord Injury
Immediately following spinal cord injury, further injury can occur through several secondary injury cascades. As a consequence of cell lysis, an increase in extracellular Ca(2+) results in additional neuronal loss by inducing apoptosis. Thus, hydrogels that reduce extracellular Ca(2+) concentration may reduce secondary injury severity. The goal of this study was to develop composite hydrogels c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biointerphases
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2008